

Mathematical model of processing parameters for mycelia growth and polysaccharides production from *Ganoderma tsugae* in Submerged Fermentation

> By Dr. Yuan-Kuang Guu Dr. Tzou-Chi Huang Dr. Jia-Hsin Guo Nukrob Narkprasom (Student)

6th Thailand-Taiwan Academic Cooperation Conference on "Food and Agricultural Innovation: Going Global" 15 November 2010 at Kasetsart University, Bangkok, Thailand

CONTENT

- 1. Introduction
- 2. Objective
- 3. Materials and Methods
- 4. Results and Discussions
- 5. Conclusions
- 6. References
- 7. Acknowledgements

1. INTRODUCTION

Ganoderma (Ganodermataceae) is a folk medicine and also a functional food due to its antitumor and certain physiological benefits. Several biologically active triterpenes and sterols have been isolated from this mushroom and been proved their effectiveness to be a cytotoxic, antiviral (e.g., anti HIV), or anti-inflammatory agent.

Introduction con't

Ganoderma is also found to be active in several other therapeutic effects, including anti-bacteria, anti-parasite, blood pressure regulation, immunomodulation, kidney toning, liver protection, nerve toning, sexual potentiating, etc.

Ganoderma tsugae Murrill, also called Song Shan Ling Chih, has been revered for centuries as a symbol of success and well being, meaning "marvelous herbs" or "mushroom of immortality" (Mau *et al.*, 2005; Tseng *et al.*, 2008).

The metabolites of *G. tsugae* consist of mainly polysaccharides and triterpenes, which have various applications in food, pharmaceutical industries (Russell and Paterson, 2006).

Currently, there have been a lot of efforts on cultivating the fungus in solid media for fruiting body production. However, the method takes long time and has high risk of contamination due to open cultivation and medium ingredients from nature (Lee *et al.*, 2004; Shih *et al.*, 2008).

Thus, submerged cultivation to produce fungus' metabolites have been received a lot of attention because of short time cultivation, high productivity, fewer chances of contamination, and easy recovery of producing metabolites (Huang and Liu, 2008; Kim *et al.*, 2007).

Many engineering parameter, such as agitation speed, aeration rate, temperature, pH, dissolved oxygen, nutrients component and fermentation time (Cui *et al.*, 1998; Liu *et al.*, 2008). are critical in submerge fermentation.

Therefore, the ways to study those engineering parameters for optimizing fermentation conditions have attracted rather high interest from industry.

Many researches reports that the mathematical model of response surface method has been applied in the optimization of biochemical and physical processes (Oscar *et al*, 1999; Muthukumar *et al*, 2003; Wang and Lu, 2005; Duta *et al*, 2006; Gao and Gu, 2007; Xu *et al*, 2008; Zhang *et al*, 2010) because of its reasonable design and excellent outcomes. Our preliminary results suggested that oxygen supply were one of the important environmental factors significantly influencing the growth and metabolite production of *G. tsugae*. In submerged-state fermentation, oxygen supply can be easily controlled by medium volume and mixing speed aerobically.

Therefore in current research, various mathematical models for biomass and polysaccharide productions during submerged cultivation of *G. tsugae* using Erlenmeyer's flasks were developed. The factors of shaking speed and medium volume were investigated to evaluate the effects of oxygen supply on the cultivation and metabolite productions of *G. tsugae*

2.OBJECTIVE

To establish mathematical models of the oxygen supply parameters during cultured *Ganoderma tsugae* in submerge fermentation for prediction of fermentation progression and for design of automation controls.

3. MATERIALS AND METHODS

• 3.1 Inoculum preparation and submerged culture

10

- 3.2 Response Surface Methodology
- 3.2 Experimental design (The factorial design)

3.1 Inoculum preparation and submerged culture

The strain was first cultured on solid medium (PDA) at 27°C for 7d in Petri dish.

The oxygen supply factors

- 1. Shaking speed (0,50,100,150,200 rpm)
- 2. Medium volume (100,150,200 mL)
- Mycelia growth
 Polysaccharides production

The culture was transferred to 500 ml Erlenmeyer flasks containing 200 ml of liquid medium (PDB).

The culture was incubated at 150 rpm, at 27°C for 7d.

11

3.2 Response Surface Method

3.2.1 Experimental Designs

- 1. Full factorial design
- 2. Box-Behken design
- 3. Central Composite design
- 4. Plackett-Burman Design

3.2.2 Analysis and Build the Math Model

- SAS®
- Statistica®
- Minitab ®
- Design-Expert®
- Microsoft Excel ® (Regression)

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

+ $\beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_2$
+ $\beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2$

3.2.3 Find the optimal value

- Microsoft Excel®

- (solve, plot 3D and contour graph)
- Statistica®
- Minitab ®
- Design-Expert®
- Matlab®
- Sigma Plot[®]
- (plot 3D and contour egraph)

Optimization of processing parameters for the mycelia growth and extracellular polysaccharide production by *Boletus* spp. ACCC 50328. Wang, Y.X. and Lu, Z.X. (2004)

Box-Behnken design matrix along with the experimental and predicted values of EPC and DCW

Std.	Temperature (x_1)	Time (x_2)	Broth content (x_3)	EPC $(\mu g m l^{-1})$		DCW (mg ml ⁻¹)	
				Experimental	Predicted	Experimental	Predicted
1	-1	-1	0	241.412	266.794	2.747	2.795
2	1	-1	0	367.449	399.833	2.893	2.991
3	-1	1	0	787.572	755.187	3.533	3.436
4	1	1	0	395.457	370.074	3.320	3.272
5	-1	0	-1	920.611	928.488	3.300	3.347
6	1	0	-1	451.473	452.348	3.080	3.078
7	-1	0	1	220.405	219.530	2.750	2.752
8	1	0	1	451.473	443.596	3.100	3.053
9	0	-1	-1	423.465	390.205	3.780	3.685
10	0	1	-1	815.580	840.087	4.080	4.130
11	0	-1	1	276.422	251.915	3.410	3.360
12	0	1	1	227.408	260.667	3.740	3.835
13	0	0	0	892.602	877.198	3.987	4.083
14	0	0	0	857.592	877.198	4.067	4.083
15	0	0	0	899.604	877.198	4.147	4.083
16	0	0	0	850.590	877.198	4.093	4.083
17	0	0	0	885.600	877.198	4.120	4.083

3.3 Experimental design (The 5x3 of factorial design)

				X1	X2	x1	X2
				0	100	-1	-1
				0	150	-1	0
				0	200	-1	1
				50	100	-0.5	-1
				50	150	-0.5	0
				50	200	-0.5	1
т 1]	100	100	0	-1
Level	~ -			100	150	0	0
0	0.5	1		100	200	0	1
100	150	200		150	100	0.5	-1
150	-	200		150	150	0.5	0
			J	150	200	0.5	1
				200	100	1	-1
				200	150	1	0

200

Actual Value

volume

200

Rpm

$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{12} x_2 + \beta_{12} x_1 x_2 + \beta_{12} x_2 + $	$\beta_{11} x_1^2$ -	$+\beta_{22}x_{2}^{2}$
--	----------------------	------------------------

Independent variable	Sym	bols	Level					
independent variable	Actual	Code	-1	-0.5	0	0.5	1	
Shaking speed (rpm)	X ₁	X ₁	0	50	100	150	200	
Medium volume (mL)	X ₂	X2	100		150	-	200	

Code Value

rpm

volume

4. RESULTS AND DISCUSSIONS

- 4.1. Mathematical model of mycelia growth
- 4.2. Mathematical model of polysaccharide Production
- 4.3 Mathematical model of Dry cell mass
 -Polysaccharides diagram of *Ganoderma tsugae*

4. RESULTS AND DISCUSSIONS

Actua	l Value	Code	Value	Total dry	cell mass	Polysacchar	ides yield
Rpm	volume	rpm	volume	(mg/fl	ask)	(mg/m	L)
X1	X2	x1	x2	Experimental	Predict	Experimental	Predict
0	100	-1	-1	140.4		149.853	
0	150	-1	0	136.4		145.896	
0	200	-1	1	196.933	į	161.796	
50	100	-0.5	-1	282.4		143.409	
50	150	-0.5	0	279.1		145.517	
50	200	-0.5	1	262.733		137.312	
100	100	0	-1	260.1		206.127	
100	150	0	0	342.233		218.134	
100	200	0	1	505.4		187.837	
150	100	0.5	-1	194.687		223.924	
150	150	0.5	0	252.833		270.452	
150	200	0.5	1	369.533		239.872	
200	100	1	-1	133.433		281.442	
200	150	1	0	272.933		308.259	
200	200	1	1	324		281.66	

4.1 Mathematical model of mycelia growth

SUMMARY OUTPUT

Regression Statistics								
Multiple R	0.89937442							
R Square	0.808874347							
Adjusted R Square	0.702693429							
Standard Error	54.10063445							
Observations	15							

 $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$

ANOVA

2		df	SS	MS	F	Significance F			
Re	gression		111403.1032	22230.0	7.01705	0.00407935			
Re	sidual	9	26341.90783	2926.88					
То	tal	14	137825.077						
<u></u>	Variable	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
	β ₀	325.679	29.39602145	11.079	1.5E-06	259.18031	392.17715	259.18031	392.1771505
	β1	33.739	19.75475858	1.7079	0.12183	-10.949257	78.42748	-10.9492574	78.42747963
	β2	64.758	17.10812277	3.78522	0.00431	26.0567376	103.45926	26.0567376	103.4592624
	β12	46.258	24.19453925	1.91192	0.08819	-8.4738502	100.98985	-8.47385016	100.9898502
	β1 ²	-137.957	33.39163652	-4.1315	0.00255	-213.49459	-62.42033	-213.49459	-62.42033073
	β2 ²	10.262	29.63213786	0.34631	0.73707	-56.770553	77.294553	-56.7705528	77.29455278

Response surface plots of mycelia growth

Figure 1. Effect of the shaking speed and medium volume on the total dry cell mass (mg/flask).

- When consider from medium volume, because of at high level of medium volume was abundant nutrient in medium, cause the mycelia growth was high production at highest medium volume.
- However, should consider the shaking speed at the same time, because agitation was important factor of the mixture of oxygen and nutrient. Agitation or shaking speed in submerged cultivation could affect fungi in several ways; damage to cell structure, morphological change, as well as variations in growth rate and product formation (Papagianni, 2004).

- The large mycelia size was produced from low agitation. Because at low agitation speed, cause the fungi pellet cannot segregate out to several small pellet. When the seed inoculums pellet cannot segregate, cause to the seed pellets received the excess oxygen and overabundant nutrient supply. So, the pellets were larger and eventually death.
- Therefore, the appropriate shaking speed at 129 rpm can be break a larger pellet into several smaller pellet which the amount of tiny particle pellet had a great influence on the final number of mycelia production (Yang *et al*, 2009; Kim *et al*, 2007; Enshasy *et al*, 2006).

4.2 Mathematical model of polysaccharide

SUMMARY OUTPUT

Regression Sta	tistics
Multiple R	0.96550279
R Square	0.93219563
Adjusted K Square	0.89452654
Standard Error	19.2088853
Observations	15

 $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ $+ \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$

ANOVA

		df	SS	MS	F	ignificance I			
Regres	sion	5	45655.82799	9131.17	24.747	5.228E-05		•	
Residu	lal	9	3320.831463	368.981					
Total		14	48976.65945						
V	ariable	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
	βo	204.645	10.43730465	19.6071	1.1E-08	181.03463	228.25628	181.0346331	228.2562799
	β1	75.710	7.014093182	10.7939	1.9E-06	59.842537	91.576499	59.84253656	91.57649876
	β2	0.372	6.07438288	0.06128	0.95247	-13.36895	14.113463	-13.3689542	14.11346323
	β12	-0.141	8.590474652	-0.0164	0.98731	-19.57351	19.2925	-19.5735076	19.29249985
	β1 ²	26.012	11.85598139	2.194	0.05588	-0.808035	52.832152	-0.8080346	52.83215174
_	Bo ²	-16.328	10.52113977	-1.552	0.15509	-40.1288	7.4721448	-40.1287985	7.472144775

Response surface plots of polysaccharides production

Figure 2. Effect of the shaking speed and medium volume on the total polysaccharides production(mg/mL).

- The effect of polysaccharides production was observed a highest level of polysaccharides production which achieved at the highest shaking speed.
- Because, polysaccharides production processes require high agitation to promote good mass transfer and achieve high product concentrations (Giavasis *et al*, 2006).
- Also, the result agreed with other reports (Yang and Liau, 1998; Lopez *et al*, 2003; Oh *et al*, 2007; Henriques *et al*, 2006; Rau *et al*, 1992) showing that agitation and shaking speed has a positive effect on the polysaccharides production but negative effect on mycelia growth.

- When considering from a medium volume, the highest polysaccharides production was obtained at 150.35 ml of medium volume.
- Because of aeration or medium volume aids to produce secondary metabolite by promoting the mass transfer of substrates, products and oxygen.
- Therefore, the appropriate aeration intensity is an important factor in polysaccharides production.

4.3 Mathematical model of Dry cell mass-Polysaccharides diagram of *G. tsugae*

 $y_{PL(x_1,x_2)} = f(y_{DCM(x_1,x_2)})$

Figure 3. Dry cell mass-Polysaccharides diagram of *Ganoderma tsugae* ²⁰

Figure 4. Polynomial equations of each level of shaking speed after rotated the axes

TABLE 1. Analysis polynomial regression of each level of shaking speed by STATISTICA 7[®].

θ = 32	0 rpm	5 rpm	10 rpm	15 rpm	20 rpm	25 rpm	30 rpm	35 rpm	40 rpm	45 rpm	50 rpm
β₀	-3245.99	-2892.71	-2610.28	-2377.56	-2181.04	-2011.68	-1863.27	-1731.34	-1612.64	-1504.76	-1405.83
β_1	31.57	26.54	22.72	19.73	17.34	15.37	13.74	12.36	11.19	10.17	9.28
β ₂	-0.08	-0.06	-0.05	-0.04	-0.03	-0.03	-0.03	-0.02	-0.02	-0.02	-0.02
θ = 32	55 rpm	60 rpm	65 rpm	70 rpm	75 rpm	80 rpm	85 rpm	90 rpm	95 rpm	100 rpm	
β	-1314.42	-1229.40	-1149.87	-1075.11	-1004.51	-937.608	-873.984	-813.302	-755.277	-699.665	
β_1	8.51	7.82	7.20	6.65	6.15	5.703	5.293	4.919	4.575	4.260	
β2	-0.01	-0.01	-0.01	-0.01	-0.01	-0.009	-0.008	-0.007	-0.007	-0.006	
θ = 32	105 rpm	110 rpm	115 rpm	120 rpm	125 rpm	130 rpm	135 rpm	140 rpm	145 rpm	150 rpm	
β	-646.260	-594.883	-545.380	-497.617	-451.477	-406.857	-363.667	-321.828	-281.269	-241.927	
β_1	3.968	3.698	3.447	3.214	2.996	2.792	2.601	2.422	2.253	2.094	
β2	-0.006	-0.006	-0.005	-0.005	-0.005	-0.004	-0.004	-0.004	-0.004	-0.003	
θ = 32	155 rpm	160 rpm	165 rpm	170 rpm	175 rpm	180 rpm	185 rpm	190 rpm	195 rpm	200 rpm	
β ₀	-203.745	-166.673	-130.666	-95.6830	-61.6876	-28.6461	3.471677	34.69328	65.04381	94.54620	
β_1	1.944	1.802	1.668	1.5403	1.4193	1.3042	1.194641	1.09024	0.99063	0.89548	
β_2	-0.003	-0.003	-0.003	-0.0028	-0.0027	-0.0026	-0.002464	-0.00236	-0.00226	-0.00217	

The relationship between the $\beta_{(32)}$ constant $(\beta_{0(32)}, \beta_{1(32)}, \beta_{2(32)})$ and shaking speed

Figure 5. Polynomial equations of each level of medium volume after rotated the axes

TABLE 2. Analysis polynomial regression of each level of medium volume by STATISTICA 7[®].

θ = 79	100 mL	105 mL	110 mL	115 mL	120 mL	125 mL	130 mL	135 mL	140 mL	145 mL	150 mL
β _o	1187.069	1211.173	1231.425	1247.865	1260.548	1269.536	1274.901	1276.721	1275.083	1270.077	1261.800
β_1	-12.398	-12.366	-12.320	-12.259	-12.185	-12.099	-12.002	-11.895	-11.778	-11.652	-11.518
β_2	0.027	0.026	0.026	0.025	0.025	0.024	0.024	0.023	0.022	0.022	0.021

θ = 79	155 mL	160 mL	165 mL	170 mL	175 mL	180 mL	185 mL	190 mL	195 mL	200 mL
β _o	1250.351	1235.834	1218.355	1198.022	1174.946	1149.239	1121.012	1090.380	1057.457	1022.356
β_1	-11.377	-11.228	-11.073	-10.913	-10.746	-10.574	-10.398	-10.218	-10.033	-9.845
β ₂	0.021	0.021	0.020	0.020	0.019	0.019	0.019	0.018	0.018	0.017

The relationship between the $\beta_{(79)}$ constant $(\beta_{0(79)}, \beta_{1(79)}, \beta_{2(79)})$ and medium volume

4.3 Mathematical model of Dry cell mass-Polysaccharides diagram of *Ganoderma tsugae*

$$PL' = \beta_{0(\theta)} + \beta_{1(\theta)}DCM' + \beta_{2(\theta)}DCM'^{2}$$

$$DCM' = DCMcos\theta + PLsin\theta$$

$$PL' = -DCMsin\theta + PLcos\theta$$

$$(-DCMsin\theta + PLcos\theta) = \beta_{0(\theta)} + \beta_{1(\theta)}(DCMcos\theta + PLsin\theta) + \beta_{2(\theta)}(DCMcos\theta + PLsin\theta)^{2}$$

when given a constant value at medium volume (x_2) and a variable value at shaking speed (x_1) , the angle $\theta = 32$

At the shaking speed 0-50 rpm

$$\begin{split} \beta_{0(32)} &= -5021.05 x_1^2 - 4012.35 x_1 - 2190.04, R^2 = 0.997817 \\ \beta_{1(32)} &= 80.76038 x_1^2 + 79.34491 x_1 + 29.33729, R^2 = 0.995537 \\ \beta_{2(32)} &= -0.261486 x_1^2 - 0.281734 x_1 - 0.092795, R^2 = 0.991723 \end{split}$$

At the shaking speed 50-200 rpm

$$\begin{split} \beta_{0(32)} &= -356.020 \, x_1^2 + 1141.012 \, x_1 - 711.136, R^2 = 0.999183 \\ \beta_{1(32)} &= 3.61502 \, x_1^2 - 6.84292 \, x_1 + 4.42930, R^2 = 0.993740 \\ \beta_{2(32)} &= -0.007056 \, x_1^2 - 0.010920 \, x_1 - 0.006725, R^2 = 0.984749 \end{split}$$

$$\cos\theta = \cos\left(\frac{\pi}{180} \times \theta\right)$$

$$\sin\theta = \sin\left(\frac{\pi}{180} \times \theta\right)$$

$$x_1, rpm_{code} = -1 + \frac{rpm_{actual}}{100}$$

$$x_2, MediumVolume_{code} = -3 + \frac{MediumVolume_{actual}}{50}$$

when given a constant value at shaking speed (x_1) and a variable value at medium volume (x_2) , the angle $\theta = 79^{\circ}$

$$\begin{split} \beta_{0(79)} &= -157.193x_2^2 - 87.903x_2 + 1261.645, R^2 = 0.998552\\ \beta_{1(79)} &= 0.3955x_2^2 + 1.3115x_2 - 11.5203, R^2 = 0.999517\\ \beta_{2(79)} &= 0.000782x_2^2 - 0.004765x_2 - 0.021495, R^2 = 0.999954 \end{split}$$

Figure 6. Spreadsheet of Ganoderma tsugae production

5. CONCLUSIONS

- Mathematical model of the process parameters for controlling the Ganoderma tsugae production by response surface methodology is an appropriate tool for evaluating those variable parameters to look for a suitable outcome from a submerge fermentation process mathematically and statistically.
- Mycelia growth requires the appropriate agitation to break up the large pellet which the broken pellets were used to reseed the formation of new pellet for increasing the mycelia production and highest medium volume to supply the nutrient consumption.
- Polysaccharides production requires the highest agitation and appropriate aeration for encourage the good mass transfer of substrates, products and oxygen.

5. CONCLUSIONS

- DCM-PL diagram was build from calculated data of both production equations while DCM-PL mathematical model was obtained from the combination of polynomial equation and the rotated of axes equation.
- The mathematical model for controlling the productions of mycelia and polysaccharides from *Ganoderma tsugae* in submerged fermentation was obtained as follows:

$(-DCMsin\theta + PLcos\theta) = \beta_{0(\theta)} + \beta_{1(\theta)}(DCMcos\theta + PLsin\theta) + \beta_{2(\theta)}(DCMcos\theta + PLsin\theta)^{2}$

 Moreover, this experiment which culture a *G. tsugae* fungus in an shaking incubator can applies to use in a bioreactor by changing the variables from shaking speed and medium volume are the agitation speed impeller and aeration air flow rate, respectively for building the DCM-PL diagram and mathematical model of the large scale bioreactor which more useful for the submerge fermentation in controlling the fungus production.

6. REFERENCES

- Cui, Y.Q., R.G.J.M. van der Lans and K.C.A.M. Luyben. 1997. Effect of agitation intensities on fungal morphology of submerged fermentation. *Biotechnology and Bioengineering*, 55: 715-6.
- Duta, F.P., F.P. Franca and L.M. Almeida. 2006. Optimization of culture conditions for exopolysaccharides production in *Rhizobuim sp.* using the response surface method. *Electronic Journal of Biotechnology*, ISSN: 0717-3458.
- Enshasy H.E., J. Kleine and U. Rinas. 2006. Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant *Aspergillus niger*. *Process Biochemistry*, 41: 2103-12.
- Gao, H. and W.Y. Gu. 2007. Optimization of polysaccharide and ergosterol production from *Agaricus brasiliensis* by fermentation process. *Biochemical Engineering Journal*, 33: 202-10.
- Giavasis, I., L.M. Harvey and B. McNeil. 2006. The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of *Sphingomonas paucimobilis*. *Enzyme and Microbial Technology*, 38: 101-8.
- Henriques A.W.S., E. Jessouroun, E.L. Lima and T.L.M. Alves. 2006. Capsular polysaccharide production by *Neisseria meningitides* serogroup C: Optimization of process variables using response surface methodology. *Process Biochemistry*, 41: 1822-8.
- Huang, H.C. and Y.C. Liu. 2008. Enhancement of polysaccharide production by optimization of culture conditions in shake flask submerged cultivation of *Grifola umbellata*. Journal of the Chinese Institute of Chemical Engineers, 39: 307-11.
- Kapat, A., Jung, J.K., Park, Y.H., Hong, S.Y. and Choi, H.K. 1998. Effect of agitation and aeration on the production of extracellular glucose oxidase from a recombinant *Saccharomyces cerevisiae*. *Bioprocess Engineering*, 18: 347-351.
- Kim S.W., H.J. Hwang, B.C. Lee and J.W. Yun. 2007. Submerged production and characterization of *G. frondosa* polysaccharides a new application to cosmeceuticals. *Food Technology and Biotechnology*, 45: 295-305.
- Lee B.C., J.T. Bae, H.B. Pyo, T.B. Choe, S.W. Kim, H.J. Hwang and J.W. Yun. 2004. Submerged culture conditions for the production of mycelia biomass and exopolysaccharides by the edible Basidiomycete *Grifola frondosa*. *Enzyme and Microbial Technology*, 35: 369-76.
- Lopez E., I. Ramos and A. Sanroman. 2003. Extracellular polysaccharides production by Arthrobacter viscosus. *Journal of Food Engineering*, 60: 463-7.
- Liu, R.S., D.S. Li, H.M. Li and Y.J. Tang. 2008. Response surface modeling the significance of nitrogen source on the submerge cultivation of Chinese truffle *Tuber sinense*. *Process Biochemistry*, 43: 868-76.
- Mau, J.L., S.Y. Tsai, Y.H. Tseng and S.J. Huang. 2005. Antioxidant properties of hot extracts from *Garnoderme tsugae* Murrill. *LWT* Food Science and Technology, 38: 589-97.

- Muthukumar M, D. Mohan and M. Rajendran. 2003. Optimization of mix proportions of mineral aggregates using Box-Behnken design of experiments. *Cement and Concrete Composites*, 25: 751-8.
- Oh J.Y., E.J. Cho, S.H. Nam, J.W. Choi and J.W. Yun. 2007. Production of polysaccharide–peptide complexes by submerged mycelial culture of an entomopathogenic fungus *Cordyceps sphecocephala*. *Process Biochemistry*, 42: 352–62.
- Oscar S.C., S.C. Gerardo, L.P.H. Jose, G.R. Mariano and F.T. Ernesto. 1999. Effect of substrate composition on the mycelial growth of *Pleurotus ostreatus*: an analysis by mixture and response surface methodologies. *Process Biochemistry*, 35: 127-33.
- Papagianni M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. *Biotechnology Advances*, 22: 189-259.
- Rau U.,E. Gura, E. Olszewski and F. Wagner. 1992. Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. *Journal of Industry Microbiology*, 9: 19-26.
- Rusell R. and M. Paterson. 2006. Ganoderma A therapeutic fungal biofactory. Phytochemistry, 67:1985-2001.
- Shih I.L., C.Y. Kuo, F.C. Hsieh, S.S. Kao and C. Hsiesh. 2008. Use of surface response methodology to optimize culture conditions for iturin A production by *Bacillus subtilis* in solid-state fermentation. *Journal of the Chinese Institute of Chemical Engineers*, 39: 635-43.
- Stephen A.M., G.O. Phillips and P.A. Williams. 2006. Food polysaccharides and their applications, p. 677-99. Taylor & Francis Group, 2nd (ed.), New York.
- Tseng Y.H., J.H. Yang and J.L. Mau. 2008. Antioxidant properties of polysaccharides from *Garnoderme tsugae*. Food Chemistry, 107: 732-8.
- Wang Y.X. and Z.X. Lu. 2005. Optimization of processing parameters for the mycelia growth and extracellular polysaccharide production by *Boletus* spp. ACCC 50328. *Process Biochemistry*, 40: 1043-51.
- Xu H., L.P. Sun, Y.Z. Shi, Y.H. Wu, B. Zhang and D.Q. Zhao. 2008. Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by *Morchella esculenta* As51620. *Biochemical Engineering Journal*, 39: 66-73.
- Yang F.C. and C.B. Liau. 1998. The influence of environmental conditions on polysaccharides formation by *Ganoderma lucidum* in submerged cultures. *Process Biochemistry*, 33: 533-47.
- Yang F.C., M.J. Yang and S.H. Cheng. 2009. A novel method to enhance the mycelia production of *Ganoderma lucidum* in submerged cultures by polymer additives and agitation strategies. *Journal of the Taiwan Institute of Chemical Engineers*, 40: 148-54.
- Zhang C., D. Fan, L. Shang, X. Ma, Y. Luo, W. Xue and P. Gao. 2010. Optimization of fermentation process for human-like collagen production of recombinant *Escherichia coli* using response surface methodology. *Chinese Journal of Chemical Engineering*, 18: 137-42.

7. ACKNOWLEDGMNTS

- This research work was financially supported by National Pingtung University of Science and Technology.
- The authors would like to thank Dr. Chiu-Hsai Chiu to lend the shaking incubator of her laboratory and Wei-Ting Tseng, Wen-Cheng Wu, Jessie Chin-Siang Tze and Lin-Cheng Chen for them help in doing experimental work.

Thank you for your attention